
Page 1

XFramer 1.45 Whitepaper
MS LeRM Laboratory

www.mslerm.narod.ru

Contents
XFramer ..1

Frame Anatomy ..1

The first program with XFramer2
Building a generator with XFramer – using
the example of a pizza-generator....................2

Embedding of files...3

Parameterization of frame blocks3

References..4

XFramer
XFramer is an extension for the programming
languages C++, C# and Java. It is available as
freeware. With XFramer these languages gain the
ability to process frames.
Together with the compiler of the appropriate
language, XFramer can be used as a frame
processor (see Figure 1). For that matter, XFramer
works like a preprocessor, which converts frame
code in valid C++, C# or Java code, which in turn
becomes processed by the appropriate compiler.
The code blocks, the generated code consist of may
contain textual components as well as binary ones.
Textual code blocks may contain code in any target
language (e.g. Basic, HTML, XML, Perl, Prolog,
and so on) or even text in natural language, which
can be used to generate documentation. If needed,
the same programming language can be used for
frame code and target language code, in the case of
C++, C# or Java. It is, however, unnecessary.

The preprocessor extends the programming
language by a few elements. New are the keyword
frame, the two XFramer-macros and the
embedding markers (called flags1). The macros
BEGIN_FRAME_TEXT() and
END_FRAME_TEXT()define the beginning and end of
the target language code. Between these, the flags
for the slots will be placed. These syntactical
elements are identical for all the supported
programming languages. Depending on the
programming language used for the frame code,
however, the XFramer supporting libraries
MFramer.X and MString.X vary. The first library
contains the so-called intrinsic methods. Intrinsic
methods are methods that belong to the fixed
commands of the frame processor. The other
library MString.X provides string functionality.
The actual versions of XFramer are available on
Windows and Linux from
http://www.geocities.com/mslerm/xframer

Frame Anatomy
A frame in XFramer consists of attributes, methods
and a frame text (see Figure 2).

Figure 2: Frame Anatomy
 The frame text contains the data, which becomes
assembled and reused during the generation process
(e.g. code building blocks). Any number of slots

1 The the term flag was chosen instead of the common term

tag to avoid mistakes. Tags usually have a different type
of syntax.

Figure 1: Code generation with XFramer

Page 2

can be created inside the frame text. These slots
contain variables or expressions that are either
elementary or of the type MString or frame.

The first program with XFramer
The classical Hello World example should not be
missing here (see Listing 1).
frame FrHelloWorld {
public:

FrHelloWorld()
{

BEGIN_FRAME_TEXT()
Hello World!
END_FRAME_TEXT()

}
};
void main()
{

FrHelloWorld frHelloworld;
frHelloworld.exportToFile("output.txt");

}

Listing 1: Hello World

It is certainly impossible to demonstrate the wide
range of possibilities with this example. However,
the basics can be explained easily. Declarations and
definition are only slightly different from those of a
class. Instead of class, the keyword frame is used
followed by the frame name (here: FrHelloWorld).
It is advisable to begin all frame names with the
prefix Fr, to visually distinguish them from the
class names. In addition to the attributes and
methods that are common to classes, frames
contain the frame text. The macros
BEGIN_FRAME_TEXT() and
END_FRAME_TEXT()define the borders of the area,
containing the frame text. In this example, the
frame instance frHelloWorld is created inside the
function main (Listing 1) with the frame text
„Hello World!“. Afterwards, it is exported to the
file output.txt by the application of the intrinsic
method exportToFile.
To obtain the final generated source code in the
target language (in this case „Hello World“ in
natural language) from the specification (Listing 1),
the following steps are necessary: XFramer has to
be started with two parameters. The first parameter
is the name of the source file (containing the
specification) and the second one is the name of the
destination file:
xframer frHelloWorld.cpp frHelloWoldFramed.cpp

XFramer automatically detects the language of the
source file and generates a destination file which
has to be compiled by the appropriate compiler.
The support libraries MString.X and MFramer.X
have to be in the project directory in order to

perform a successful compilation. The execution of
the resulting binary file frHelloWorldFramed.exe2
produces the file output.txt, which contains the
generated source code “Hello World”.

Building a generator with XFramer –
using the example of a pizza-generator
As already mentioned at the beginning, frame
technology is well suited for generative
programming. Feature models [CE00; CBUE02]
possess all necessary information to build a frame
hierarchy.

Figure 3: feature diagram of a pizza-system

Figure 3 presents a feature diagram, which models
a pizza concept. Cheese and Dough are mandatory
features because every pizza needs them. Sort is
also a mandatory feature. Therefore only one
feature from the group of the optional features Fish
and Meat must be chosen. Extra is optional and has
the subfeatures Chili and Garlic which are linked in
an or-group.
frame FrTemplate {
public:

FrTemplate(MString name)
{

BEGIN_FRAME_TEXT()
struct <!name!> {

<!name!>()
{

cout << "<!name!>" << endl;
}

} obj<!name!>;
END_FRAME_TEXT()

}
};

Listing 2: Template for the basic component of the pizza-system

Listing 2 FrTemplate defines a template for all
elementary building blocks of the pizza system.
The name is the variation point. The name defines
the data type, constructor, display and object name.
The realization of the feature Sort is shown in
Listing 3.

2 If Linux is used as operating system, the file is named

frHelloWorldFramed.

Page 3

frame FrSort {
public:

FrSort(MString mstr = "")
{

BEGIN_FRAME_TEXT()
<!
(mstr != "Meat")

? FrTemplate("Fish")
: FrTemplate("Meat")

!>
END_FRAME_TEXT()

}
};

Listing 3: Realization of the feature „Sort“

The frame FrSort gets a string parameter and fills
FrTemplate. If an empty string or invalid identifier
is passed, FrSort fills the frame FrTemplate with
Fish. The logic inside the slots can be conveniently
realized with the ternary operator ?. It is, however,
not mandatory to hide the logic inside the slots, as
Listing 4 shows.
frame FrExtra {
public:

FrExtra(MString mstr1 = "", MString mstr2 = "")
{

MString mstrTemp1 = "";
if (!mstr1.isEmpty()) {

mstrTemp1 = (mstr1 != "Garlic")
? FrTemplate("Chili")
: FrTemplate("Garlic");

}

MString mstrTemp2 = "";
if (!mstr2.isEmpty() && mstr2 != mstr1) {

mstrTemp2 = (mstr2 != "Garlic")
? FrTemplate("Chili")
: FrTemplate("Garlic");

}

BEGIN_FRAME_TEXT()
<!mstrTemp1!>
<!mstrTemp2!>
END_FRAME_TEXT()

}
};

Listing 4: Realization of the feature „Extra“

FrExtra works in a similar way as FrSort. The
difference is that here the components Chili and
Garlic may also appear together or not at all. If the
same component is used twice, a special routine is
called.
frame FrPizza {
public:

FrPizza(FrSort frSort, FrExtra frExtra = FrExtra())
{

BEGIN_FRAME_TEXT()
#include <iostream.h>
<!FrTemplate("Dough")!>
<!FrTemplate("Cheese")!>
<!frSort!>
<!frExtra!>
void main(){}
END_FRAME_TEXT()

}
};

Listing 5: Pizza concept-frame

FrPizza (see Listing 5) is the root of the whole
pizza frame hierarchy. The constructor of FrPizza
accepts the frame instances of FrSort and
optionally FrExtra. The instantiation of

FrTemplate embeds the components Cheese and
Dough, which are mandatory parts of the pizza
system. Subsequently, the Sort and Extra instances
are embedded.
void main()
{

FrPizza(FrSort()).exportToFile("pizza1.cpp");

FrPizza(FrSort("Fish"),
FrExtra("Chili")).exportToFile("pizza2.cpp");

FrPizza(FrSort("Meat"), FrExtra("Garlic",
"Chili")).exportToFile("pizza3.cpp");

}

Listing 6: Pizza orders

Finally the Listing 6 shows how various pizzas can
be assembled. The instances of the frame FrPizza
contain a C++-program that the intrinsic function
exportToFile exports to a file, which in turn is
compiled by a C++ compiler.

Embedding of files
Another feature of XFramer is the possibility to
embed files. In the case, that existing code has to be
encapsulated in frames manually. This can be time
consuming and would render the code more
complex than necessary. In the case of binary files,
there are even additional problem to solve.
1. BEGIN_FRAME_TEXT()
2. <#example.bin#>
3. <!MString().importFromFile("example.bin")!>
4. END_FRAME_TEXT()

Listing 7: Pizza concept-frame

Therefore, XFramer has the file embedding flags
<# and #> (see listing 7 line 2). Inside these flags a
file with path may be declared, which becomes
embedded at this place. Please notice the similarity
to a C++ include-directive.
Files can however, also be embedded inside of slots
(<! !>). This is possible by the application of the
importFromFile method of MString class (see
listing 7, line 3). In the latter case, the file content
becomes loaded not until runtime of the generator
as opposed to embedding flags, which weaves the
contents, like resources into the generator.

Parameterization of frame blocks
In some cases XFramer-flags can become in
conflict with characters of the target language. An
example is the generation of HTML-pages. There is
a conflict between the HTML-comment characters
<!—and the slot flag <!.

Page 4

BEGIN_FRAME_TEXT(FLAG_<! = "<BEGIN_OF_EMBEDDING>",
FLAG_!> = "<END_OF_EMBEDDING >")

<!-- this is a comment --!>
<BEGIN_OF_EMBEDDING>
Slot
<END_OF_EMBEDDING>
END_FRAME_TEXT()

Listing 8: Renaming of the slot flags

Fortunately, this problem could be solved easily by
renaming slot flags (see listing 8). XFramer-
directives, which begin with the prefix FLAG_,
allow the assignment of a new string. These flag
substitutions are optional and can be announced
between the brackets of the BEGIN_FRAME_TEXT-
macro. For that matter, the order of the assignments
is irrelevant. The validity of the flags substitutions
is local and limited to the following frame text
block.
This local implementation in XFramer was
consciously preferred to the usual solution with
configuration file, because of the following
reasons.

- The replacement can always be easily
spotted in the code, therefore improving
maintains.

- Other projects can reuse the code without
alteration, due to the substitutions are
contained in the code itself.

- The various frame text parameterization can
be applied anywhere in any number.

References
[CE00] K. Czarnecki and U. W. Eisenecker,
Generative Programming - Methods, Tools, and
Applications, Addison-Wesley, 2000, see::
http://www.generative-programming.org
[CBOE02] K. Czarnecki, T. Bednasch, U. W.
Eisenecker, P. Unger, Generative Programming for
Embedded Software: An Industrial Experience
Report, In online proceedings of the GCPE 2002

